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Introduction

This report covers over five years of research in CFD and its applications. During that
time, I completed the publication of work on hypersonic flows, modeled incompressible
flow about submarine hulls, and computed the flow about supersonic transport aircraft
on parallel computers. Finally, using CFD as an established tool, I began to explore
aerodynamic optimization on parallel architectures.

The objective of this work has always been to provide better tools to vehicle designers.
Submarine design requires accurate force and moment calculations in flows with thick
boundary layers and large separated vortices. Low noise production is critical, so flow into
the propulsor region must be predicted accurately.

The High Speed Civil Transport (HSCT) has been the subject of the most recent work.
This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight times
by more than half. A successful design must far surpass the performance of the only exist-
ing comparable plane, the Concorde. Fuel economy, other operational costs, environmental
impact, and range must all be improved substantially. The aircraft must be able to fly
many more routes than the Concorde, and can only do so if noise production can be limited.
For all of these reasons, improved design tools are required, and these tools must eventu-
ally integrate optimization, external aerodynamics, propulsion, structures, heat transfer,
controls, and perhaps other disciplines. If this project contributes to improved design tools
for US industry, and thus to our economic competitiveness, it is successful.

The work was done under cooperative agreements NCC 2-505 and NCC 2-796. I was
a co-principal investigator under the first agreement from July 1989 to May 1993. I was
principal investigator under the second agreement from May 1993 until January 1995. The
work completed during these periods will be highlighted in roughly chronological order.

Incompressible Flow for Submarine Hydrodynamics

The goal of this project was to accurately and quickly compute flows about submarine
hulls. The results would be used in the DARPA SUBOFTF project to evaluate the state of
the art in hydrodynamic codes, and to select codes for future use in submarine design.

The initial work was done with the INS-3D code. Accomplishments included moving the
code to Cray-2 and Cray Y-MP architectures, addition of the Baldwin-Lomax turbulence
model to the code, and implementation of a zonal grid scheme. Solutions were converged
on a 10-zone grid, representing the hull, fairwater (sail), and four tail appendages. A
13-zone solution with 1.9 million points and improved boundary layer resolution was in
progress when emphasis was shifted to the INS3D-LU code.



In a meeting at Ames in December 19897, representatives of the SUBOFF project
emphasized the need for advanced turbulence models and faster computational times.
They were particularly impressed with Seokkwan Yoon’s presentation of the performance
of the INS3D-LU code. By April 1990, work with INS-3D was suspended and I was using
the LU code full time.

To the LU code I added periodic boundary conditions, grid singularity conditions, and
a turbulence model. The periodic conditions required conversion of several subroutines to
periodic form. I also optimized the code to run as fast as 6 useconds/point /iteration on
one Cray Y-MP processor.

In order to extract data required for the SUBOFF project, I wrote a general interpolation
code, which returns the Q variables for any x,y,z location within a grid, using a tetrahedral
decomposition of the grid. The results were presented at a SUBOFF meeting in Annapolis®.

The interest of the SUBOFF committee was limited to a small portion of the requested
data, which happened to include the regions most poorly modeled by our grids and the
LU code. As a result, the work fared poorly in SUBOFF evaluations.

On return to Ames, I set out to find the true source of the errors, using test cases
which would isolate potential problems. Periodic flows about a cylinder and flow about a
hemisphere cylinder with a grid singularity converged nicely. A coarse grid on a flat plate
reproduced the Blasius boundary layer for low Reynolds numbers. The only case with
exceptional errors was one which attempted to compute a high Reynolds number solution
on a flat plate. After extensive tests of various grid stretching strategies and smoothing
parameters, this problem remained. The deficiency of the LU code in convergence on fine
grids has still not been corrected, although significant progress has been made recently by
Goetz Klopfer and Dean Kontinos.

In order to continue with the SUBOFF project, coarsened grids were used. With spacing
of 1.0E-3, the solution converged, but with no boundary layer development at all. With
1.0E-5 spacing, an approximation to the boundary layer was obtained, but convergence
was poor. Aside from inaccurate boundary layer thickness, a reasonable representation of
the flow physics was obtained.

The improved results were presented to SUBOFF committee members at David Taylor
Research Center in September 1990. They were pleased by visualizations of vortex sepa-
ration phenomena near the fairwater which other SUBOFF participants had missed. As
expected, wake-survey data showed only qualitative agreement with experimental results,
due to the inablity to converge solutions on a fine grid.

The SUBOFF committee appeared to conclude that no available CFD code was ade-
quate for outright prediction of drag or moments on a full submarine. Funding originally
planned for ongoing work was redirected, and the project ended. A promised final report
was never distributed.

Other work during this time period included testing of non-reflective boundary con-
ditions based on the work of Bayliss, Gunzburger, and Turkel. Although developed for
spherical outer boundaries and laminar flow, the conditions improved convergence on the
SUBOFF cases, and allowed an outer boundary only two body lengths from the vehicle
surface. I served as mentor for highschool student Adam Nash, and he was helping me
make test runs to quantify the effect of the nonreflective boundary conditions when this
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project ended in December 1990.

Parallel CFD Computation

The national HPCCP program was established, including a Computational Aerosciences
(CAS) element. CFD was to be performed on highly parallel computers, with faster
testbed machines obtained on a regular basis. Long-range goals included teraflops-rate
multidisciplinary optimization of aerospace vehicles.

In January 1991, I began exploring the use of parallel, distributed memory computers
for CFD. The initial plan was to port the CNS (Compressible Navier-Stokes) code to the
Intel iPSC/860. CNS was a code which I developed for my Ph.D. thesis work in 1987 and
19882, and which became a standard within the Applied Computational Fluids (later
Computational Aerosciences) branch at NASA Ames.

My first tests on the iPSC/860 involved a simple thermal relaxation code, which was
small enough to allow short compilation times and easy modification. This code later
became instrumental in testing parallel I/O strategies, and was requested by researchers
at NAS, RIACS, Dartmouth, and several Intel Corporation sites. This work revealed some
surprising behavior of the iPSC/860 I/O system, and was used in defining I/O requirements
for future machines!?.

The CNS port was under way from March through August 1991, when I learned that
Sisira Weeratunga had parallelized the ARC3D algorithm on the iPSC/860. His work was
based on the OVERFLOW code, and he was using a more sophistocated parallelization
method, so I dropped the CNS port and got a copy of what later was called Parallel
OVERFLOW. I added parallel I/O to the code (it could only run a single, internally-
generated grid), as well as a restart capability. This allowed testing to begin with a flat
plate case, which ran at 32 microseconds/point /iteration on 32 processors.

In October 1991, I computed an Euler solution on the Boeing 1807 wing body, a pre-
liminary HSCT (High Speed Civil Transport) design. For this case, computational times
improved to 28.9 usec/pt/it on 32 processors, with timings of 18.8 and 11.1 on 64 and
128 processors, respectively. Several tests were made to explore differences between the
parallel solution and UPS Cray results. The differences were identified to be the result of
different effective grid resolution in the two codes.

In November 1991, Ron Bailey identified my wing-body results (presented by Tom Ed-
wards) as possibly the first 3-D external flow calculations on a massively parallel machine.
This led to a video!! describing the work, later used in HPCCP program reviews by Ken
Stevens, and finally incorporated in a professionally- developed video used for presenta-
tions to Congress during the budgeting process. Graphics from this project have been
requested dozens of times, and included in the publication “High Performance Computing
and Communications: Toward a National Information Infrastructure”, otherwise known
as the “FY 1994 Blue Book” of the National Coordination Office for HPCC.

In March 1992, I completed a parallel Baldwin-Lomax model. This allowed Navier-
Stokes HSCT solutions to be computed in parallel’®>. An attempt to present the work
at “Parallel CFD ’93” was thwarted by the 427 approval process, which took 120 days,
extending past the abstract deadline. I refused an invitation to present the work at “Physics
Computing ’93” in Albuquerque, New Mexico, on the recommendation of my technical
monitor, due to joint sponsorship by the European Physical Society.
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In July 1992, work began with a new version of Parallel OVERFLOW, in which Sisira
Weeratunga had included Chimera grid capabilities. This allowed the computation of more
complex geometries, limited only by grid generation capabilities and available memory on
the parallel computers. Computational time was now down to about 20 useconds/point
/iteration on 32 processors. Computations included a wing/nacelle in September 1992,
wing/body /nacelle in October 1992, and wing/nacelle/diverter in October 19934-6,14,15

In response to a Boeing request in April 1993, I prepared a test case for the Parallel
OVERFLOW code, and assisted John Wai of Boeing Military Aircraft in running the case
on their parallel system.

Throughout this project I have contributed to other’s work by enhancing communica-
tions. I maintained an email list and sent written notes of NAS Parallel Systems meetings
to interested RFA civil service and contractor researchers. At those meetings I was often
the only user representing our needs to the NAS staff. I established a series of meetings on
HPC and CAS topics. Half of the meetings were for MCAT Parallel Computing Section
employees only, and are continuing. The others were open technical sessions, which were
converted to branch HPC meetings by Terry Holst.

I contributed to the K-12 education mandate of HPCCP, by mentoring a teacher during
the summer of 1993. This led to a package of teaching materials, in both paper and
electronic form, which introduces the concept of representing continuous quantities on a
discreet grid. I also organized a 3-hour session to introduce a group of high school teachers
from Mendocino County to concepts which might be introduced in their classrooms.

Parallel Aerodynamic Optimization

In May 1993, I first ran Parallel OVERFLOW under the control of the NPSOL opti-
mizer, moving closer to the design goals of HPCC. This tool was tested against the Haack-
Adams results of Samson Cheung and Phil Aaronson, and later applied to a wing-fuselage
geometry. The work required new parallel grid-modification routines, and parallelization
of force and moment routines. The code also had to be modified to accomodate larger
amounts of Chimera interface information than had been provided for.

The work using NPSOL used parallel computation within each flow solution, but ran
those solutions one at a time. This meant that an additional level of parallelism was going
unexploited. NPSOL was difficult to parallelize, and in February 1994, Samson Cheung
wrote a simpler version of the quasi-Newton optimization method which was designed for
parallelization. I developed a grid generation code which would produce wing surface and
volume grids as a function of a broad set of design variables. These include span, chord,
twist, sweep, thickness, and camber. Each variable can be described multiple locations
where appropriate.

The combined wing generation and optimization code was originally targeted for the
iPSC/860 or the Intel Paragon, but announcement of the impending acquisition of an IBM
SP-2 system changed the focus to workstation clusters which have more in common with the
SP-2. The code was tested on the NAS SPS machines, and on the RFA workstation cluster,
with encouraging results. The required cases for derivitive calculations and line searches
were done in parallel, using one serial flow solver on each workstation. Maximum parallel
speedup will be achieved by using the MEDUSA code of Merritt Smith for distribution
of zones across multiple machines, and the multipartitioning algorithms of Rob van der
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Wijngaart for parallelism within zones.

Work Since August 1994

This time period began with efforts to extend prior results to new architectures. The
OVERFLOW solver was compiled on the IBM SP2 computer, and an account on a Cray
T3D at Pittsburg was obtained. On the SP2, I worked with the PVM and MPI message
passing libraries.

A major goal for this period was to compute a 19-zone, 5 million point Navier-Stokes
solution about the Boeing Reference H geometry with engine nacelles and diverters. Such
a large problem would be impossible on the iPSC/860, so an account on the Intel Paragon
was obtained. A copy of Weeratunga’s parallel flow solver proved to be poorly debugged,
relative to prior versions on the iPSC/860. I identified and fixed 7 bugs which prevented
the code from being used effectively. I was then able to obtain two to three orders of
magnitude convergence on a 7-zone subset of the target problem. Poor Chimera interfaces
are the likely reason that further convergence is difficult. The nacelles were not added
during the cooperative agreement period.

Graphics of my optimization and HSCT work were in demand during this period. I
provided slides to Terry Holst, Merritt Smith, Guru Guruswamy, and I.C. Chang for a
variety of presentations. I also supported a method for extracting cross-sectional data from
CFD datasets, which I developed during HSCT validation studies. Customers included
Francisco Torres and Joseph Garcia. Finally, I did some educational outreach by visiting
a classroom of 4th graders preparing to attend the Ames Aerospace Encounter, and by
answering questions for a high school student who has a grant to write a paper on NASA
policy.

Summary and Conclusions

During the last five years, CFD has matured substantially. Pure CFD research remains
to be done, but much of the focus has shifted to integration of CFD into the design process.
The work under these cooperative agreements reflects this trend. The recent work, and
work which is planned, is designed to enhance the competitiveness of the US aerospace
industry. CFD and optimization approaches are being developed and tested, so that the
industry can better choose which methods to adopt in their design processes. The range
of computer architectures has been dramatically broadened, as the assumption that only
huge vector supercomputers could be useful has faded. Today, researchers and industry
can trade off time, cost, and availabilty, choosing vector supercomputers, scalable parallel
architectures, networked workstations, or heterogenous combinations of these to complete
required computations efficiently.
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